Nuprl Lemma : sqntype_base
∀[n:ℕ]. sqntype(n;Base)
Proof
Definitions occuring in Statement : 
sqntype: sqntype(n;T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
sqntype: sqntype(n;T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uimplies: b supposing a, 
sq_type: SQType(T), 
guard: {T}, 
prop: ℙ
Lemmas referenced : 
subtype_base_sq, 
base_wf, 
subtype_rel_self, 
equal-wf-base, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
sqequalnReflexivity
Latex:
\mforall{}[n:\mBbbN{}].  sqntype(n;Base)
Date html generated:
2019_06_20-AM-11_34_06
Last ObjectModification:
2018_08_17-PM-03_51_54
Theory : int_1
Home
Index