Nuprl Lemma : sqntype_base

[n:ℕ]. sqntype(n;Base)


Proof




Definitions occuring in Statement :  sqntype: sqntype(n;T) nat: uall: [x:A]. B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] sqntype: sqntype(n;T) all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a sq_type: SQType(T) guard: {T} prop:
Lemmas referenced :  subtype_base_sq base_wf subtype_rel_self equal-wf-base nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination because_Cache dependent_functionElimination hypothesisEquality independent_functionElimination sqequalnReflexivity

Latex:
\mforall{}[n:\mBbbN{}].  sqntype(n;Base)



Date html generated: 2019_06_20-AM-11_34_06
Last ObjectModification: 2018_08_17-PM-03_51_54

Theory : int_1


Home Index