Nuprl Lemma : div-self

[y:ℤ-o]. (y ÷ 1)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_nzero: -o
Lemmas referenced :  div-cancel one-mul int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality sqequalRule setElimination rename hypothesis sqequalAxiom

Latex:
\mforall{}[y:\mBbbZ{}\msupminus{}\msupzero{}].  (y  \mdiv{}  y  \msim{}  1)



Date html generated: 2016_05_14-AM-07_24_12
Last ObjectModification: 2015_12_26-PM-01_29_36

Theory : int_2


Home Index