Nuprl Lemma : div-self
∀[y:ℤ-o]. (y ÷ y ~ 1)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
Lemmas referenced : 
div-cancel, 
one-mul, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
sqequalRule, 
setElimination, 
rename, 
hypothesis, 
sqequalAxiom
Latex:
\mforall{}[y:\mBbbZ{}\msupminus{}\msupzero{}].  (y  \mdiv{}  y  \msim{}  1)
Date html generated:
2016_05_14-AM-07_24_12
Last ObjectModification:
2015_12_26-PM-01_29_36
Theory : int_2
Home
Index