Step
*
1
2
1
1
2
of Lemma
mu-ge-bound
1. d : ℤ
2. 0 < d
3. ∀[n,m:ℤ]. (((m - n) ≤ (d - 1))
⇒ (∀[f:{n..m-} ⟶ 𝔹]. mu-ge(f;n) ∈ {n..m-} supposing ∃k:{n..m-}. (↑(f k))))
4. n : ℤ
5. m : ℤ
6. (m - n) ≤ d
7. f : {n..m-} ⟶ 𝔹
8. ¬↑(f n)
9. k : {n..m-}
10. ↑(f k)
11. mu-ge(f;n + 1) = mu-ge(f;n + 1) ∈ {n + 1..m-}
⊢ {n + 1..m-} ⊆r {n..m-}
BY
{ Auto }
Latex:
Latex:
1. d : \mBbbZ{}
2. 0 < d
3. \mforall{}[n,m:\mBbbZ{}].
(((m - n) \mleq{} (d - 1))
{}\mRightarrow{} (\mforall{}[f:\{n..m\msupminus{}\} {}\mrightarrow{} \mBbbB{}]. mu-ge(f;n) \mmember{} \{n..m\msupminus{}\} supposing \mexists{}k:\{n..m\msupminus{}\}. (\muparrow{}(f k))))
4. n : \mBbbZ{}
5. m : \mBbbZ{}
6. (m - n) \mleq{} d
7. f : \{n..m\msupminus{}\} {}\mrightarrow{} \mBbbB{}
8. \mneg{}\muparrow{}(f n)
9. k : \{n..m\msupminus{}\}
10. \muparrow{}(f k)
11. mu-ge(f;n + 1) = mu-ge(f;n + 1)
\mvdash{} \{n + 1..m\msupminus{}\} \msubseteq{}r \{n..m\msupminus{}\}
By
Latex:
Auto
Home
Index