Nuprl Lemma : rem_sym_1

[a:ℤ]. ∀[n:ℤ-o].  ((-(a rem n)) (-a rem n) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  rem_antisym int_nzero_wf istype-int
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality equalitySymmetry universeIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    ((-(a  rem  n))  =  (-a  rem  n))



Date html generated: 2020_05_19-PM-09_41_09
Last ObjectModification: 2019_12_28-PM-03_28_35

Theory : int_2


Home Index