Nuprl Lemma : rem_antisym

[a:ℤ]. ∀[b:ℤ-o].  ((-a rem b) (-(a rem b)) ∈ ℤ)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] remainder: rem m minus: -n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q squash: T prop: nat_plus: + le: A ≤ B and: P ∧ Q nequal: a ≠ b ∈  not: ¬A implies:  Q false: False guard: {T} uimplies: supposing a true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q top: Top int_lower: {...i} uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b) int_nzero: -o so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  nat_plus_wf int_nzero_wf decidable__le equal_wf squash_wf true_wf rem_2_to_1 less_than_transitivity1 le_weakening less_than_irreflexivity subtype_rel_self iff_weakening_equal minus-minus minus-one-mul minus-one-mul-top le_wf add_functionality_wrt_le le_reflexive zero-add add-mul-special zero-mul false_wf not-le-2 condition-implies-le minus-add add-commutes minus-zero add-associates add-zero le-add-cancel less_than_wf not-equal-2 not-lt-2 decidable__lt rem_sym le-add-cancel2 one-mul mul-associates add-swap int_subtype_base nequal_wf set_subtype_base add-is-int-iff subtract_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis introduction extract_by_obid intEquality Error :isect_memberFormation_alt,  Error :universeIsType,  sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache dependent_functionElimination natural_numberEquality unionElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality minusEquality remainderEquality setElimination rename productElimination independent_isectElimination independent_functionElimination voidElimination imageMemberEquality baseClosed instantiate voidEquality dependent_set_memberEquality multiplyEquality independent_pairFormation addEquality closedConclusion baseApply

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    ((-a  rem  b)  =  (-(a  rem  b)))



Date html generated: 2019_06_20-AM-11_25_22
Last ObjectModification: 2018_09_26-AM-10_58_28

Theory : arithmetic


Home Index