Nuprl Lemma : comb_for_append_wf
λT,as,bs,z. (as @ bs) ∈ T:Type ⟶ as:(T List) ⟶ bs:(T List) ⟶ (↓True) ⟶ (T List)
Proof
Definitions occuring in Statement : 
append: as @ bs
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
append_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mlambda{}T,as,bs,z.  (as  @  bs)  \mmember{}  T:Type  {}\mrightarrow{}  as:(T  List)  {}\mrightarrow{}  bs:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (T  List)
Date html generated:
2019_06_20-PM-00_39_01
Last ObjectModification:
2018_10_02-PM-05_40_42
Theory : list_0
Home
Index