Nuprl Lemma : comb_for_append_wf

λT,as,bs,z. (as bs) ∈ T:Type ⟶ as:(T List) ⟶ bs:(T List) ⟶ (↓True) ⟶ (T List)


Proof




Definitions occuring in Statement :  append: as bs list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  append_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mlambda{}T,as,bs,z.  (as  @  bs)  \mmember{}  T:Type  {}\mrightarrow{}  as:(T  List)  {}\mrightarrow{}  bs:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  (T  List)



Date html generated: 2019_06_20-PM-00_39_01
Last ObjectModification: 2018_10_02-PM-05_40_42

Theory : list_0


Home Index