Nuprl Lemma : comb_for_map_wf
λA,B,f,l,z. map(f;l) ∈ A:Type ⟶ B:Type ⟶ f:(A ⟶ B) ⟶ l:(A List) ⟶ (↓True) ⟶ (B List)
Proof
Definitions occuring in Statement :
map: map(f;as)
,
list: T List
,
squash: ↓T
,
true: True
,
member: t ∈ T
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
squash: ↓T
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
Lemmas referenced :
map_wf,
squash_wf,
true_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :lambdaEquality_alt,
sqequalHypSubstitution,
imageElimination,
cut,
introduction,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
Error :universeIsType,
Error :functionIsType,
Error :inhabitedIsType,
universeEquality
Latex:
\mlambda{}A,B,f,l,z. map(f;l) \mmember{} A:Type {}\mrightarrow{} B:Type {}\mrightarrow{} f:(A {}\mrightarrow{} B) {}\mrightarrow{} l:(A List) {}\mrightarrow{} (\mdownarrow{}True) {}\mrightarrow{} (B List)
Date html generated:
2019_06_20-PM-00_39_03
Last ObjectModification:
2018_10_02-PM-05_40_40
Theory : list_0
Home
Index