Nuprl Lemma : concat_conv_single_nil_lemma
concat([[]]) ~ []
Proof
Definitions occuring in Statement : 
concat: concat(ll), 
cons: [a / b], 
nil: [], 
sqequal: s ~ t
Definitions unfolded in proof : 
concat: concat(ll), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
reduce_cons_lemma, 
list_ind_nil_lemma, 
reduce_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis
Latex:
concat([[]])  \msim{}  []
Date html generated:
2016_05_14-AM-06_31_55
Last ObjectModification:
2015_12_26-PM-00_37_59
Theory : list_0
Home
Index