Nuprl Lemma : eval_list_cons_lemma

b,a:Top.  (eval_list([a b]) eval b' eval_list(b) in [a b'])


Proof




Definitions occuring in Statement :  eval_list: eval_list(t) cons: [a b] callbyvalue: callbyvalue top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  eval_list: eval_list(t) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] cons: [a b]
Lemmas referenced :  list_ind_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation

Latex:
\mforall{}b,a:Top.    (eval\_list([a  /  b])  \msim{}  eval  b'  =  eval\_list(b)  in  [a  /  b'])



Date html generated: 2016_05_14-AM-06_29_09
Last ObjectModification: 2015_12_26-PM-00_40_28

Theory : list_0


Home Index