Step
*
1
1
2
2
of Lemma
list-continuity
1. X : ℕ ⟶ Type
2. d : ℤ
3. 0 < d
4. ∀x:⋂n:ℕ. ((X n) List). ((||x|| ≤ (d - 1))
⇒ (x ∈ (⋂n:ℕ. (X n)) List))
5. x : ⋂n:ℕ. ((X n) List)
6. x ∈ (X 0) List
7. ||x|| ≤ d
8. ¬||x|| < d
⊢ x ∈ (⋂n:ℕ. (X n)) List
BY
{ Subst' x ~ [hd(x) / tl(x)] 0 }
1
.....equality.....
1. X : ℕ ⟶ Type
2. d : ℤ
3. 0 < d
4. ∀x:⋂n:ℕ. ((X n) List). ((||x|| ≤ (d - 1))
⇒ (x ∈ (⋂n:ℕ. (X n)) List))
5. x : ⋂n:ℕ. ((X n) List)
6. x ∈ (X 0) List
7. ||x|| ≤ d
8. ¬||x|| < d
⊢ x ~ [hd(x) / tl(x)]
2
1. X : ℕ ⟶ Type
2. d : ℤ
3. 0 < d
4. ∀x:⋂n:ℕ. ((X n) List). ((||x|| ≤ (d - 1))
⇒ (x ∈ (⋂n:ℕ. (X n)) List))
5. x : ⋂n:ℕ. ((X n) List)
6. x ∈ (X 0) List
7. ||x|| ≤ d
8. ¬||x|| < d
⊢ [hd(x) / tl(x)] ∈ (⋂n:ℕ. (X n)) List
Latex:
Latex:
1. X : \mBbbN{} {}\mrightarrow{} Type
2. d : \mBbbZ{}
3. 0 < d
4. \mforall{}x:\mcap{}n:\mBbbN{}. ((X n) List). ((||x|| \mleq{} (d - 1)) {}\mRightarrow{} (x \mmember{} (\mcap{}n:\mBbbN{}. (X n)) List))
5. x : \mcap{}n:\mBbbN{}. ((X n) List)
6. x \mmember{} (X 0) List
7. ||x|| \mleq{} d
8. \mneg{}||x|| < d
\mvdash{} x \mmember{} (\mcap{}n:\mBbbN{}. (X n)) List
By
Latex:
Subst' x \msim{} [hd(x) / tl(x)] 0
Home
Index