Nuprl Lemma : list_acc_cons_red_lemma

v,u,b,f:Top.  (list-accum(t,a,h.f[t;a;h];b;[u v]) list-accum(t,a,h.f[t;a;h];f[v;b;u];v))


Proof




Definitions occuring in Statement :  list-accum: list-accum(t,a,h.f[t; a; h];b;L) cons: [a b] top: Top so_apply: x[s1;s2;s3] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T list-accum: list-accum(t,a,h.f[t; a; h];b;L) cons: [a b] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2]
Lemmas referenced :  top_wf spread_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}v,u,b,f:Top.    (list-accum(t,a,h.f[t;a;h];b;[u  /  v])  \msim{}  list-accum(t,a,h.f[t;a;h];f[v;b;u];v))



Date html generated: 2018_05_21-PM-00_19_13
Last ObjectModification: 2018_05_19-AM-06_59_10

Theory : list_0


Home Index