Nuprl Lemma : list_acc_cons_red_lemma
∀v,u,b,f:Top.  (list-accum(t,a,h.f[t;a;h];b;[u / v]) ~ list-accum(t,a,h.f[t;a;h];f[v;b;u];v))
Proof
Definitions occuring in Statement : 
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
, 
cons: [a / b]
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
, 
cons: [a / b]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
Lemmas referenced : 
top_wf, 
spread_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}v,u,b,f:Top.    (list-accum(t,a,h.f[t;a;h];b;[u  /  v])  \msim{}  list-accum(t,a,h.f[t;a;h];f[v;b;u];v))
Date html generated:
2018_05_21-PM-00_19_13
Last ObjectModification:
2018_05_19-AM-06_59_10
Theory : list_0
Home
Index