Nuprl Lemma : map-pair
∀[f,a,b:Top].  (map(f;<a, b>) ~ <f a, map(f;b)>)
Proof
Definitions occuring in Statement : 
map: map(f;as)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cons: [a / b]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
map_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[f,a,b:Top].    (map(f;<a,  b>)  \msim{}  <f  a,  map(f;b)>)
Date html generated:
2016_05_14-AM-06_29_20
Last ObjectModification:
2015_12_26-PM-00_40_14
Theory : list_0
Home
Index