Nuprl Lemma : prod-if-ispair-append-nil

[l:Base]. (l ∈ Top × Top) supposing ((↑ispair(l [])) and (l [])↓)


Proof




Definitions occuring in Statement :  append: as bs nil: [] has-value: (a)↓ assert: b bfalse: ff btrue: tt uimplies: supposing a uall: [x:A]. B[x] top: Top ispair: if is pair then otherwise b member: t ∈ T product: x:A × B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T append: as bs list_ind: list_ind has-value: (a)↓ all: x:A. B[x] implies:  Q or: P ∨ Q cons: [a b] assert: b ifthenelse: if then else fi  btrue: tt top: Top nil: [] it: bfalse: ff false: False not: ¬A prop:
Lemmas referenced :  has-value-implies-dec-ispair-2 top_wf has-value-implies-dec-isaxiom-2 bottom_diverge assert_wf has-value_wf_base is-exception_wf btrue_wf bfalse_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut sqequalHypSubstitution sqequalRule callbyvalueCallbyvalue hypothesis callbyvalueReduce introduction extract_by_obid dependent_functionElimination thin hypothesisEquality independent_functionElimination unionElimination independent_pairEquality isect_memberEquality voidElimination voidEquality lambdaFormation Error :universeIsType,  isectElimination ispairCases divergentSqle baseClosed baseApply closedConclusion axiomSqEquality Error :inhabitedIsType

Latex:
\mforall{}[l:Base].  (l  \mmember{}  Top  \mtimes{}  Top)  supposing  ((\muparrow{}ispair(l  @  []))  and  (l  @  [])\mdownarrow{})



Date html generated: 2019_06_20-PM-00_39_22
Last ObjectModification: 2018_09_26-PM-02_09_51

Theory : list_0


Home Index