Nuprl Lemma : bl-exists-cons
∀[f,u,v:Top]. ((∃x∈[u / v].f[x])_b ~ f[u] ∨b(∃x∈v.f[x])_b)
Proof
Definitions occuring in Statement :
bl-exists: (∃x∈L.P[x])_b
,
cons: [a / b]
,
bor: p ∨bq
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
sqequal: s ~ t
Definitions unfolded in proof :
bl-exists: (∃x∈L.P[x])_b
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
reduce_cons_lemma,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
isect_memberFormation,
introduction,
sqequalAxiom,
isectElimination,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[f,u,v:Top]. ((\mexists{}x\mmember{}[u / v].f[x])\_b \msim{} f[u] \mvee{}\msubb{}(\mexists{}x\mmember{}v.f[x])\_b)
Date html generated:
2016_05_14-PM-02_10_36
Last ObjectModification:
2015_12_26-PM-05_04_15
Theory : list_1
Home
Index