Nuprl Lemma : comparison-seq-zero-simple
∀[T:Type]. ∀[c1,c2:comparison(T)]. ∀[x,y:T].
  uiff((comparison-seq(c1; c2) x y) = 0 ∈ ℤ;((c1 x y) = 0 ∈ ℤ) ∧ ((c2 x y) = 0 ∈ ℤ))
Proof
Definitions occuring in Statement : 
comparison-seq: comparison-seq(c1; c2)
, 
comparison: comparison(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
comparison: comparison(T)
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
comparison-seq-zero, 
subtype_rel_comparison, 
equal-wf-T-base, 
comparison_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
applyEquality, 
setEquality, 
cumulativity, 
intEquality, 
setElimination, 
rename, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
sqequalRule, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[c1,c2:comparison(T)].  \mforall{}[x,y:T].
    uiff((comparison-seq(c1;  c2)  x  y)  =  0;((c1  x  y)  =  0)  \mwedge{}  ((c2  x  y)  =  0))
Date html generated:
2017_04_17-AM-08_28_49
Last ObjectModification:
2017_02_27-PM-04_49_22
Theory : list_1
Home
Index