Nuprl Lemma : concat-cons2

[l,ll:Top].  (concat([l ll]) concat(ll))


Proof




Definitions occuring in Statement :  concat: concat(ll) append: as bs cons: [a b] uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  concat: concat(ll) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  reduce_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[l,ll:Top].    (concat([l  /  ll])  \msim{}  l  @  concat(ll))



Date html generated: 2016_05_14-AM-07_38_39
Last ObjectModification: 2015_12_26-PM-02_12_50

Theory : list_1


Home Index