Nuprl Lemma : count-pos-iff

[A:Type]. ∀P:A ⟶ 𝔹. ∀L:A List.  ((∃x∈L. ↑(P x)) ⇐⇒ 0 < count(P;L))


Proof




Definitions occuring in Statement :  count: count(P;L) l_exists: (∃x∈L. P[x]) list: List assert: b bool: 𝔹 less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  length-filter-pos-iff count-length-filter list_wf bool_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination sqequalRule functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:A  List.    ((\mexists{}x\mmember{}L.  \muparrow{}(P  x))  \mLeftarrow{}{}\mRightarrow{}  0  <  count(P;L))



Date html generated: 2016_10_21-AM-10_13_08
Last ObjectModification: 2016_08_05-PM-06_13_46

Theory : list_1


Home Index