Nuprl Lemma : count-pos-iff
∀[A:Type]. ∀P:A ⟶ 𝔹. ∀L:A List.  ((∃x∈L. ↑(P x)) 
⇐⇒ 0 < count(P;L))
Proof
Definitions occuring in Statement : 
count: count(P;L)
, 
l_exists: (∃x∈L. P[x])
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
length-filter-pos-iff, 
count-length-filter, 
list_wf, 
bool_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
sqequalRule, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:A  List.    ((\mexists{}x\mmember{}L.  \muparrow{}(P  x))  \mLeftarrow{}{}\mRightarrow{}  0  <  count(P;L))
Date html generated:
2016_10_21-AM-10_13_08
Last ObjectModification:
2016_08_05-PM-06_13_46
Theory : list_1
Home
Index