Nuprl Lemma : filter-singleton

[x,P:Top].  (filter(P;[x]) if then [x] else [] fi )


Proof




Definitions occuring in Statement :  filter: filter(P;l) cons: [a b] nil: [] ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  filter: filter(P;l) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  reduce_cons_lemma reduce_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[x,P:Top].    (filter(P;[x])  \msim{}  if  P  x  then  [x]  else  []  fi  )



Date html generated: 2016_05_14-PM-02_57_45
Last ObjectModification: 2015_12_26-PM-02_30_06

Theory : list_1


Home Index