Step
*
2
1
1
1
of Lemma
from-upto-is-nil
1. n : ℤ
2. m : ℤ
3. m ≤ n
4. v : {x:ℤ| (n ≤ x) ∧ x < m} List
5. [n, m) = v ∈ ({x:ℤ| (n ≤ x) ∧ x < m} List)
⊢ (v = [] ∈ (ℤ List))
⇒ uiff(v ~ [];m ≤ n)
BY
{ D -2 }
1
1. n : ℤ
2. m : ℤ
3. m ≤ n
4. [n, m) = [] ∈ ({x:ℤ| (n ≤ x) ∧ x < m} List)
⊢ ([] = [] ∈ (ℤ List))
⇒ uiff([] ~ [];m ≤ n)
2
1. n : ℤ
2. m : ℤ
3. m ≤ n
4. u : {x:ℤ| (n ≤ x) ∧ x < m}
5. v : {x:ℤ| (n ≤ x) ∧ x < m} List
6. [n, m) = [u / v] ∈ ({x:ℤ| (n ≤ x) ∧ x < m} List)
⊢ ([u / v] = [] ∈ (ℤ List))
⇒ uiff([u / v] ~ [];m ≤ n)
Latex:
Latex:
1. n : \mBbbZ{}
2. m : \mBbbZ{}
3. m \mleq{} n
4. v : \{x:\mBbbZ{}| (n \mleq{} x) \mwedge{} x < m\} List
5. [n, m) = v
\mvdash{} (v = []) {}\mRightarrow{} uiff(v \msim{} [];m \mleq{} n)
By
Latex:
D -2
Home
Index