Nuprl Lemma : has-value-last
∀[l:Base]. l ∈ Top × Top supposing (last(l))↓
Proof
Definitions occuring in Statement : 
last: last(L)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
last: last(L)
, 
select: L[n]
, 
has-value: (a)↓
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
callbyvalueSpread, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[l:Base].  l  \mmember{}  Top  \mtimes{}  Top  supposing  (last(l))\mdownarrow{}
Date html generated:
2016_05_14-AM-07_42_03
Last ObjectModification:
2016_01_15-AM-08_35_43
Theory : list_1
Home
Index