Nuprl Lemma : len_cons_lemma

as,a:Top.  (len([a as]) len(as) 1)


Proof




Definitions occuring in Statement :  len: len(as) cons: [a b] top: Top all: x:A. B[x] add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T len: len(as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}as,a:Top.    (len([a  /  as])  \msim{}  len(as)  +  1)



Date html generated: 2016_05_14-AM-07_41_05
Last ObjectModification: 2015_12_26-PM-02_51_01

Theory : list_1


Home Index