Nuprl Lemma : list_n_properties
∀[A:Type]. ∀[n:ℤ]. ∀[as:A List(n)].  (||as|| = n ∈ ℤ)
Proof
Definitions occuring in Statement : 
list_n: A List(n)
, 
length: ||as||
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list_n: A List(n)
Lemmas referenced : 
list_n_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
intEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbZ{}].  \mforall{}[as:A  List(n)].    (||as||  =  n)
Date html generated:
2016_05_14-AM-07_40_25
Last ObjectModification:
2015_12_26-PM-02_51_03
Theory : list_1
Home
Index