Step
*
1
2
1
of Lemma
orbit-exists
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. a : T
6. k : ℕ
7. i : ℕk
8. (f^k a) = (f^i a) ∈ T
9. ∀i:ℕk. (¬(∃i@0:ℕi. ((f^i a) = (f^i@0 a) ∈ T)))
⊢ ∃L:T List. (no_repeats(T;L) ∧ (∀i:ℕ||L||. (L[i] = (f^i a) ∈ T)) ∧ (∀b:T. ((b ∈ L)
⇐⇒ ∃n:ℕ. (b = (f^n a) ∈ T))))
BY
{ ((InstConcl [⌜map(λn.(f^n a);upto(k))⌝]⋅
THENM RWO "member_map" 0
THENM skip{RWO "no_repeats_iff" 0}
THENM skip{Try ((RWO "before-map" 0 THENM RWO "before-upto" 0))})
THEN Reduce 0
THEN Auto
THEN ExRepD
THEN Auto) }
1
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. a : T
6. k : ℕ
7. i : ℕk
8. (f^k a) = (f^i a) ∈ T
9. ∀i:ℕk. (¬(∃i@0:ℕi. ((f^i a) = (f^i@0 a) ∈ T)))
⊢ no_repeats(T;map(λn.(f^n a);upto(k)))
2
1. T : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. a : T
6. k : ℕ
7. i : ℕk
8. (f^k a) = (f^i a) ∈ T
9. ∀i:ℕk. (¬(∃i@0:ℕi. ((f^i a) = (f^i@0 a) ∈ T)))
10. no_repeats(T;map(λn.(f^n a);upto(k)))
11. i1 : ℕ||map(λn.(f^n a);upto(k))||
⊢ map(λn.(f^n a);upto(k))[i1] = (f^i1 a) ∈ T
3
1. [T] : Type
2. ∀x,y:T. Dec(x = y ∈ T)
3. finite-type(T)
4. f : T ⟶ T
5. a : T
6. k : ℕ
7. i : ℕk
8. (f^k a) = (f^i a) ∈ T
9. ∀i:ℕk. (¬(∃i@0:ℕi. ((f^i a) = (f^i@0 a) ∈ T)))
10. no_repeats(T;map(λn.(f^n a);upto(k)))
11. ∀i:ℕ||map(λn.(f^n a);upto(k))||. (map(λn.(f^n a);upto(k))[i] = (f^i a) ∈ T)
12. b : T
13. n : ℕ
14. b = (f^n a) ∈ T
⊢ ∃y:ℕ. ((y ∈ upto(k)) ∧ (b = (f^y a) ∈ T))
Latex:
Latex:
1. [T] : Type
2. \mforall{}x,y:T. Dec(x = y)
3. finite-type(T)
4. f : T {}\mrightarrow{} T
5. a : T
6. k : \mBbbN{}
7. i : \mBbbN{}k
8. (f\^{}k a) = (f\^{}i a)
9. \mforall{}i:\mBbbN{}k. (\mneg{}(\mexists{}i@0:\mBbbN{}i. ((f\^{}i a) = (f\^{}i@0 a))))
\mvdash{} \mexists{}L:T List
(no\_repeats(T;L) \mwedge{} (\mforall{}i:\mBbbN{}||L||. (L[i] = (f\^{}i a))) \mwedge{} (\mforall{}b:T. ((b \mmember{} L) \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}. (b = (f\^{}n a)))))
By
Latex:
((InstConcl [\mkleeneopen{}map(\mlambda{}n.(f\^{}n a);upto(k))\mkleeneclose{}]\mcdot{}
THENM RWO "member\_map" 0
THENM skip\{RWO "no\_repeats\_iff" 0\}
THENM skip\{Try ((RWO "before-map" 0 THENM RWO "before-upto" 0))\})
THEN Reduce 0
THEN Auto
THEN ExRepD
THEN Auto)
Home
Index