Step
*
2
2
of Lemma
orbit-iterates
1. T : Type
2. f : T ⟶ T
3. L : T List
4. 0 < ||L||
5. no_repeats(T;L)
6. ∀i:ℕ||L||. ((f L[i]) = if (i =z ||L|| - 1) then L[0] else L[i + 1] fi ∈ T)
7. i : ℕ||L||
8. n : ℤ
9. 0 < n
10. (f^n - 1 L[i]) = L[i + (n - 1) rem ||L||] ∈ T
⊢ (f^n L[i]) = L[if (i + (n - 1) rem ||L|| =z ||L|| - 1) then 0 else (i + (n - 1) rem ||L||) + 1 fi ] ∈ T
BY
{ ((RW funexpC 0 THENA Auto) THEN SplitOnConclITE THEN Auto THEN Reduce 0) }
1
1. T : Type
2. f : T ⟶ T
3. L : T List
4. 0 < ||L||
5. no_repeats(T;L)
6. ∀i:ℕ||L||. ((f L[i]) = if (i =z ||L|| - 1) then L[0] else L[i + 1] fi ∈ T)
7. i : ℕ||L||
8. n : ℤ
9. 0 < n
10. (f^n - 1 L[i]) = L[i + (n - 1) rem ||L||] ∈ T
11. ¬(n = 0 ∈ ℤ)
⊢ (f (f^n - 1 L[i])) = L[if (i + (n - 1) rem ||L|| =z ||L|| - 1) then 0 else (i + (n - 1) rem ||L||) + 1 fi ] ∈ T
Latex:
Latex:
1. T : Type
2. f : T {}\mrightarrow{} T
3. L : T List
4. 0 < ||L||
5. no\_repeats(T;L)
6. \mforall{}i:\mBbbN{}||L||. ((f L[i]) = if (i =\msubz{} ||L|| - 1) then L[0] else L[i + 1] fi )
7. i : \mBbbN{}||L||
8. n : \mBbbZ{}
9. 0 < n
10. (f\^{}n - 1 L[i]) = L[i + (n - 1) rem ||L||]
\mvdash{} (f\^{}n L[i])
= L[if (i + (n - 1) rem ||L|| =\msubz{} ||L|| - 1) then 0 else (i + (n - 1) rem ||L||) + 1 fi ]
By
Latex:
((RW funexpC 0 THENA Auto) THEN SplitOnConclITE THEN Auto THEN Reduce 0)
Home
Index