Nuprl Lemma : poly_int_val_nil_cons
∀l,a:Top.  ([]@[a / l] ~ 0)
Proof
Definitions occuring in Statement : 
poly-int-val: p@l, 
cons: [a / b], 
nil: [], 
top: Top, 
all: ∀x:A. B[x], 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
sum_aux: sum_aux(k;v;i;x.f[x]), 
sum: Σ(f[x] | x < k), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
it: ⋅, 
nil: [], 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
select: L[n], 
top: Top, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
top_wf, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
poly_int_val_cons
Rules used in proof : 
independent_isectElimination, 
baseClosed, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
sqequalRule, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}l,a:Top.    ([]@[a  /  l]  \msim{}  0)
Date html generated:
2017_04_20-AM-07_09_00
Last ObjectModification:
2017_04_17-PM-00_04_51
Theory : list_1
Home
Index