Nuprl Lemma : rotate-bijection
∀n:ℕ+. Bij(ℕn;ℕn;rot(n))
Proof
Definitions occuring in Statement : 
rotate: rot(n)
, 
biject: Bij(A;B;f)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
biject: Bij(A;B;f)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_plus_wf, 
rotate-surjection, 
nat_plus_subtype_nat, 
rotate-injection
Rules used in proof : 
dependent_functionElimination, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  Bij(\mBbbN{}n;\mBbbN{}n;rot(n))
Date html generated:
2017_04_17-AM-08_09_10
Last ObjectModification:
2017_03_29-PM-00_36_21
Theory : list_1
Home
Index