Nuprl Lemma : rotate-bijection

n:ℕ+Bij(ℕn;ℕn;rot(n))


Proof




Definitions occuring in Statement :  rotate: rot(n) biject: Bij(A;B;f) int_seg: {i..j-} nat_plus: + all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q biject: Bij(A;B;f) all: x:A. B[x]
Lemmas referenced :  nat_plus_wf rotate-surjection nat_plus_subtype_nat rotate-injection
Rules used in proof :  dependent_functionElimination sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  Bij(\mBbbN{}n;\mBbbN{}n;rot(n))



Date html generated: 2017_04_17-AM-08_09_10
Last ObjectModification: 2017_03_29-PM-00_36_21

Theory : list_1


Home Index