Nuprl Lemma : sqequal-null

[T:Type]. ∀[l:T List].  [] supposing ↑null(l)


Proof




Definitions occuring in Statement :  null: null(as) nil: [] list: List assert: b uimplies: supposing a uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  sqequal-nil assert_wf null_wf list_wf assert_of_null
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis axiomSqEquality Error :universeIsType,  sqequalRule Error :isect_memberEquality_alt,  because_Cache equalityTransitivity equalitySymmetry universeEquality productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    l  \msim{}  []  supposing  \muparrow{}null(l)



Date html generated: 2019_06_20-PM-01_19_19
Last ObjectModification: 2018_09_30-PM-03_56_42

Theory : list_1


Home Index