Nuprl Lemma : 33-is-sum-of-three-cubes

This solution to the problem of writing 33 as the sum of three cubes
was found around March 9, 2019 by Andrew Booker using 15 core-years
computation time (over three weeks real time) on super-computer in Bristol.

The smallest number for which it is unknown whether it is the sum of three
cubes is now 42 (and the next is 114).⋅

a,b,c:ℤ(((a a) (b b) (c c)) 33 ∈ ℤ)


Proof




Definitions occuring in Statement :  exists: x:A. B[x] multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] top: Top subtype_rel: A ⊆B
Lemmas referenced :  mul-associates istype-void mul-commutes add-swap add-associates add-commutes int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :dependent_pairFormation_alt,  natural_numberEquality minusEquality sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :isect_memberEquality_alt,  voidElimination hypothesis Error :equalityIstype,  Error :inhabitedIsType,  hypothesisEquality baseApply closedConclusion baseClosed applyEquality sqequalBase equalitySymmetry Error :productIsType,  because_Cache

Latex:
\mexists{}a,b,c:\mBbbZ{}.  (((a  *  a  *  a)  +  (b  *  b  *  b)  +  (c  *  c  *  c))  =  33)



Date html generated: 2019_06_20-PM-02_42_48
Last ObjectModification: 2019_03_16-PM-00_59_30

Theory : num_thy_1


Home Index