Nuprl Lemma : assoced_equiv_rel
EquivRel(ℤ;x,y.x ~ y)
Proof
Definitions occuring in Statement : 
assoced: a ~ b, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
implies: P ⇒ Q, 
symmetrize: Symmetrize(x,y.R[x; y];a;b), 
assoced: a ~ b
Lemmas referenced : 
symmetrized_preorder, 
divides_wf, 
istype-int, 
divides_preorder
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
independent_functionElimination
Latex:
EquivRel(\mBbbZ{};x,y.x  \msim{}  y)
Date html generated:
2019_06_20-PM-02_20_48
Last ObjectModification:
2018_10_03-AM-00_35_49
Theory : num_thy_1
Home
Index