Nuprl Lemma : divides_preorder

Preorder(ℤ;x,y.x y)


Proof




Definitions occuring in Statement :  divides: a preorder: Preorder(T;x,y.R[x; y]) int:
Definitions unfolded in proof :  preorder: Preorder(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) and: P ∧ Q cand: c∧ B all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] prop:
Lemmas referenced :  divides_reflexivity istype-int divides_wf divides_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut Error :lambdaFormation_alt,  introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_pairFormation Error :universeIsType,  isectElimination Error :inhabitedIsType,  independent_functionElimination

Latex:
Preorder(\mBbbZ{};x,y.x  |  y)



Date html generated: 2019_06_20-PM-02_20_08
Last ObjectModification: 2018_10_03-AM-00_35_39

Theory : num_thy_1


Home Index