Nuprl Lemma : divides_preorder
Preorder(ℤ;x,y.x | y)
Proof
Definitions occuring in Statement : 
divides: b | a, 
preorder: Preorder(T;x,y.R[x; y]), 
int: ℤ
Definitions unfolded in proof : 
preorder: Preorder(T;x,y.R[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ
Lemmas referenced : 
divides_reflexivity, 
istype-int, 
divides_wf, 
divides_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
Error :lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
Error :universeIsType, 
isectElimination, 
Error :inhabitedIsType, 
independent_functionElimination
Latex:
Preorder(\mBbbZ{};x,y.x  |  y)
Date html generated:
2019_06_20-PM-02_20_08
Last ObjectModification:
2018_10_03-AM-00_35_39
Theory : num_thy_1
Home
Index