Step
*
of Lemma
base-is-base-list
∀[T:Type]. ∀[x:Base]. ((x ∈ T List)
⇒ (x ∈ Base List))
BY
{ (Intro THEN Assert ⌜∀n:ℕ. ∀x:Base. ((x ∈ T List)
⇒ (||x|| = n ∈ ℤ)
⇒ (x ∈ Base List))⌝⋅) }
1
.....assertion.....
1. [T] : Type
⊢ ∀n:ℕ. ∀x:Base. ((x ∈ T List)
⇒ (||x|| = n ∈ ℤ)
⇒ (x ∈ Base List))
2
1. [T] : Type
2. ∀n:ℕ. ∀x:Base. ((x ∈ T List)
⇒ (||x|| = n ∈ ℤ)
⇒ (x ∈ Base List))
⊢ ∀[x:Base]. ((x ∈ T List)
⇒ (x ∈ Base List))
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[x:Base]. ((x \mmember{} T List) {}\mRightarrow{} (x \mmember{} Base List))
By
Latex:
(Intro THEN Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}x:Base. ((x \mmember{} T List) {}\mRightarrow{} (||x|| = n) {}\mRightarrow{} (x \mmember{} Base List))\mkleeneclose{}\mcdot{})
Home
Index