Nuprl Lemma : base-is-base-list
∀[T:Type]. ∀[x:Base].  ((x ∈ T List) 
⇒ (x ∈ Base List))
Proof
Definitions occuring in Statement : 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
true: True
, 
pi2: snd(t)
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
length_wf, 
int_subtype_base, 
equal-wf-base, 
list_wf, 
base_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
equal_wf, 
list-cases, 
nil_wf, 
product_subtype_list, 
cons_wf, 
length_of_cons_lemma, 
le_weakening2, 
non_neg_length, 
decidable__lt, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
pair-eta, 
subtype_rel_product, 
top_wf, 
exists_wf, 
sqequal-wf-base, 
subtype_base_sq, 
pi2_wf, 
pi1_wf, 
decidable__equal_int, 
add-is-int-iff, 
false_wf, 
length_wf_nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
universeEquality, 
lambdaFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
baseClosed, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
baseApply, 
closedConclusion, 
sqequalIntensionalEquality, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
pointwiseFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[x:Base].    ((x  \mmember{}  T  List)  {}\mRightarrow{}  (x  \mmember{}  Base  List))
Date html generated:
2018_05_21-PM-01_17_08
Last ObjectModification:
2018_05_03-PM-07_20_23
Theory : num_thy_1
Home
Index