Nuprl Lemma : base-is-base-list

[T:Type]. ∀[x:Base].  ((x ∈ List)  (x ∈ Base List))


Proof




Definitions occuring in Statement :  list: List uall: [x:A]. B[x] implies:  Q member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q cons: [a b] le: A ≤ B guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] nil: [] it: sq_type: SQType(T) true: True pi2: snd(t) uiff: uiff(P;Q)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base length_wf int_subtype_base equal-wf-base list_wf base_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf equal_wf list-cases nil_wf product_subtype_list cons_wf length_of_cons_lemma le_weakening2 non_neg_length decidable__lt intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma pair-eta subtype_rel_product top_wf exists_wf sqequal-wf-base subtype_base_sq pi2_wf pi1_wf decidable__equal_int add-is-int-iff false_wf length_wf_nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut universeEquality lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry applyEquality because_Cache baseClosed unionElimination promote_hyp hypothesis_subsumption productElimination baseApply closedConclusion sqequalIntensionalEquality instantiate cumulativity applyLambdaEquality pointwiseFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[x:Base].    ((x  \mmember{}  T  List)  {}\mRightarrow{}  (x  \mmember{}  Base  List))



Date html generated: 2018_05_21-PM-01_17_08
Last ObjectModification: 2018_05_03-PM-07_20_23

Theory : num_thy_1


Home Index