Nuprl Lemma : log_wf
∀[b:{i:ℤ| 1 < i} ]. ∀[x:ℤ].  (log(b;x) ∈ ℕ)
Proof
Definitions occuring in Statement : 
log: log(b;n)
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
log: log(b;n)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
genfact-inv_wf, 
nat_plus_wf, 
istype-less_than, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
Error :universeIsType, 
hypothesis, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
closedConclusion, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :setIsType
Latex:
\mforall{}[b:\{i:\mBbbZ{}|  1  <  i\}  ].  \mforall{}[x:\mBbbZ{}].    (log(b;x)  \mmember{}  \mBbbN{})
Date html generated:
2019_06_20-PM-02_32_29
Last ObjectModification:
2019_03_06-AM-10_52_46
Theory : num_thy_1
Home
Index