Nuprl Lemma : genfact-inv_wf

[f:ℕ+ ⟶ ℤ]. ∀[b:ℕ+]. ∀[N:ℤ].  (genfact-inv(N;b;m.f[m]) ∈ {n:ℕN ≤ genfact(n;b;m.f[m])} supposing ∀m:ℕ+1 < f[m]


Proof




Definitions occuring in Statement :  genfact-inv: genfact-inv(N;b;m.f[m]) genfact: genfact(n;b;m.f[m]) nat_plus: + nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_exists: x:A [B[x]] genfact-inv: genfact-inv(N;b;m.f[m]) genfact-unbounded-ext so_apply: x[s] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B guard: {T} so_lambda: λ2x.t[x] nat: nat_plus: + prop:
Lemmas referenced :  genfact-unbounded-ext uimplies_subtype nat_plus_wf sq_exists_wf nat_wf le_wf genfact_wf istype-nat less_than_wf subtype_rel_self istype-int istype-less_than
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule thin instantiate extract_by_obid hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalHypSubstitution dependent_functionElimination hypothesisEquality rename isectElimination applyEquality equalityTransitivity equalitySymmetry functionEquality intEquality Error :lambdaEquality_alt,  setElimination because_Cache natural_numberEquality independent_isectElimination Error :equalityIstype,  independent_functionElimination axiomEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :universeIsType,  Error :functionIsType

Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[N:\mBbbZ{}].    (genfact-inv(N;b;m.f[m])  \mmember{}  \{n:\mBbbN{}|  N  \mleq{}  genfact(n;b;m.f[m])\}  )  supposin\000Cg  \mforall{}m:\mBbbN{}\msupplus{}.  1  <  f[m]



Date html generated: 2019_06_20-PM-02_26_01
Last ObjectModification: 2019_02_11-PM-00_14_07

Theory : num_thy_1


Home Index