Nuprl Lemma : genfact-inv_wf
∀[f:ℕ+ ⟶ ℤ]. ∀[b:ℕ+]. ∀[N:ℤ].  (genfact-inv(N;b;m.f[m]) ∈ {n:ℕ| N ≤ genfact(n;b;m.f[m])} ) supposing ∀m:ℕ+. 1 < f[m]
Proof
Definitions occuring in Statement : 
genfact-inv: genfact-inv(N;b;m.f[m])
, 
genfact: genfact(n;b;m.f[m])
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_exists: ∃x:A [B[x]]
, 
genfact-inv: genfact-inv(N;b;m.f[m])
, 
genfact-unbounded-ext, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
prop: ℙ
Lemmas referenced : 
genfact-unbounded-ext, 
uimplies_subtype, 
nat_plus_wf, 
sq_exists_wf, 
nat_wf, 
le_wf, 
genfact_wf, 
istype-nat, 
less_than_wf, 
subtype_rel_self, 
istype-int, 
istype-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
rename, 
isectElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
Error :lambdaEquality_alt, 
setElimination, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
Error :equalityIstype, 
independent_functionElimination, 
axiomEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
Error :functionIsType
Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[b:\mBbbN{}\msupplus{}].  \mforall{}[N:\mBbbZ{}].    (genfact-inv(N;b;m.f[m])  \mmember{}  \{n:\mBbbN{}|  N  \mleq{}  genfact(n;b;m.f[m])\}  )  supposin\000Cg  \mforall{}m:\mBbbN{}\msupplus{}.  1  <  f[m]
Date html generated:
2019_06_20-PM-02_26_01
Last ObjectModification:
2019_02_11-PM-00_14_07
Theory : num_thy_1
Home
Index