Nuprl Lemma : genfact-unbounded-ext
∀f:ℕ+ ⟶ ℤ. ∀b:ℕ+. ∀N:ℤ.  (∃n:ℕ [(N ≤ genfact(n;b;m.f[m]))]) supposing ∀m:ℕ+. 1 < f[m]
Proof
Definitions occuring in Statement : 
genfact: genfact(n;b;m.f[m])
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T
, 
so_apply: x[s]
, 
genrec-ap: genrec-ap, 
genfact-unbounded, 
uniform-comp-nat-induction, 
decidable__le, 
decidable__and, 
decidable__not, 
decidable__less_than', 
decidable__implies, 
decidable__false, 
any: any x
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
uimplies: b supposing a
Lemmas referenced : 
genfact-unbounded, 
lifting-strict-decide, 
istype-void, 
strict4-decide, 
lifting-strict-less, 
uniform-comp-nat-induction, 
decidable__le, 
decidable__and, 
decidable__not, 
decidable__less_than', 
decidable__implies, 
decidable__false
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}b:\mBbbN{}\msupplus{}.  \mforall{}N:\mBbbZ{}.    (\mexists{}n:\mBbbN{}  [(N  \mleq{}  genfact(n;b;m.f[m]))])  supposing  \mforall{}m:\mBbbN{}\msupplus{}.  1  <  f[m]
Date html generated:
2019_06_20-PM-02_25_54
Last ObjectModification:
2019_03_26-AM-07_43_38
Theory : num_thy_1
Home
Index