Nuprl Lemma : genfact-unbounded
∀f:ℕ+ ⟶ ℤ. ∀b:ℕ+. ∀N:ℤ.  (∃n:ℕ [(N ≤ genfact(n;b;m.f[m]))]) supposing ∀m:ℕ+. 1 < f[m]
Proof
Definitions occuring in Statement : 
genfact: genfact(n;b;m.f[m])
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
genfact: genfact(n;b;m.f[m])
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
subtract: n - m
, 
lt_int: i <z j
, 
assert: ↑b
, 
bnot: ¬bb
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
sq_exists: ∃x:A [B[x]]
, 
int_seg: {i..j-}
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
imax_unfold, 
add_functionality_wrt_eq, 
assert_of_le_int, 
le_int_wf, 
ifthenelse_wf, 
imax_nat, 
imax_wf, 
false_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
multiply-is-int-iff, 
subtract_wf, 
mul_preserves_lt, 
subtract-1-ge-0, 
btrue_wf, 
ge_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__equal_int, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
iff_weakening_equal, 
subtype_rel_self, 
genfact-step, 
istype-universe, 
true_wf, 
squash_wf, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
nat_plus_properties, 
nat_properties, 
sq_stable__equal, 
decidable__le, 
int_seg_wf, 
istype-le, 
le_witness_for_triv, 
istype-nat, 
sq_exists_wf, 
le_wf, 
genfact_wf, 
equal-wf-base, 
nat_wf, 
uniform-comp-nat-induction, 
istype-less_than, 
nat_plus_wf, 
istype-int, 
int_subtype_base, 
subtype_base_sq, 
int-value-type, 
equal_wf, 
set-value-type, 
member-less_than
Rules used in proof : 
Error :productIsType, 
applyLambdaEquality, 
sqequalIntensionalEquality, 
closedConclusion, 
baseApply, 
pointwiseFunctionality, 
intWeakElimination, 
promote_hyp, 
equalityElimination, 
universeEquality, 
multiplyEquality, 
independent_pairFormation, 
voidElimination, 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
Error :dependent_set_memberFormation_alt, 
unionElimination, 
Error :isectIsType, 
sqequalBase, 
because_Cache, 
Error :setIsType, 
productElimination, 
addEquality, 
isectEquality, 
setEquality, 
functionEquality, 
Error :functionIsType, 
independent_functionElimination, 
cumulativity, 
instantiate, 
setElimination, 
Error :universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
Error :equalityIstype, 
Error :dependent_set_memberEquality_alt, 
cutEval, 
intEquality, 
rename, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}b:\mBbbN{}\msupplus{}.  \mforall{}N:\mBbbZ{}.    (\mexists{}n:\mBbbN{}  [(N  \mleq{}  genfact(n;b;m.f[m]))])  supposing  \mforall{}m:\mBbbN{}\msupplus{}.  1  <  f[m]
Date html generated:
2019_06_20-PM-02_25_50
Last ObjectModification:
2019_06_19-PM-00_08_06
Theory : num_thy_1
Home
Index