Nuprl Lemma : genfact-unbounded

f:ℕ+ ⟶ ℤ. ∀b:ℕ+. ∀N:ℤ.  (∃n:ℕ [(N ≤ genfact(n;b;m.f[m]))]) supposing ∀m:ℕ+1 < f[m]


Proof




Definitions occuring in Statement :  genfact: genfact(n;b;m.f[m]) nat_plus: + nat: less_than: a < b uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  genfact: genfact(n;b;m.f[m]) lelt: i ≤ j < k less_than: a < b subtract: m lt_int: i <j assert: b bnot: ¬bb bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 rev_implies:  Q iff: ⇐⇒ Q true: True top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  squash: T sq_stable: SqStable(P) or: P ∨ Q decidable: Dec(P) sq_exists: x:A [B[x]] int_seg: {i..j-} and: P ∧ Q le: A ≤ B nat_plus: + nat: subtype_rel: A ⊆B prop: guard: {T} implies:  Q sq_type: SQType(T) so_lambda: λ2x.t[x] so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  imax_unfold add_functionality_wrt_eq assert_of_le_int le_int_wf ifthenelse_wf imax_nat imax_wf false_wf int_term_value_mul_lemma itermMultiply_wf multiply-is-int-iff subtract_wf mul_preserves_lt subtract-1-ge-0 btrue_wf ge_wf int_term_value_subtract_lemma itermSubtract_wf decidable__equal_int less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf iff_weakening_equal subtype_rel_self genfact-step istype-universe true_wf squash_wf int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma itermAdd_wf itermConstant_wf intformless_wf decidable__lt int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma intformeq_wf itermVar_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat nat_plus_properties nat_properties sq_stable__equal decidable__le int_seg_wf istype-le le_witness_for_triv istype-nat sq_exists_wf le_wf genfact_wf equal-wf-base nat_wf uniform-comp-nat-induction istype-less_than nat_plus_wf istype-int int_subtype_base subtype_base_sq int-value-type equal_wf set-value-type member-less_than
Rules used in proof :  Error :productIsType,  applyLambdaEquality sqequalIntensionalEquality closedConclusion baseApply pointwiseFunctionality intWeakElimination promote_hyp equalityElimination universeEquality multiplyEquality independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation imageElimination baseClosed imageMemberEquality Error :dependent_set_memberFormation_alt,  unionElimination Error :isectIsType,  sqequalBase because_Cache Error :setIsType,  productElimination addEquality isectEquality setEquality functionEquality Error :functionIsType,  independent_functionElimination cumulativity instantiate setElimination Error :universeIsType,  equalitySymmetry equalityTransitivity Error :equalityIstype,  Error :dependent_set_memberEquality_alt,  cutEval intEquality rename Error :inhabitedIsType,  Error :functionIsTypeImplies,  hypothesis independent_isectElimination applyEquality natural_numberEquality isectElimination extract_by_obid hypothesisEquality thin dependent_functionElimination Error :lambdaEquality_alt,  sqequalHypSubstitution sqequalRule introduction cut Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}b:\mBbbN{}\msupplus{}.  \mforall{}N:\mBbbZ{}.    (\mexists{}n:\mBbbN{}  [(N  \mleq{}  genfact(n;b;m.f[m]))])  supposing  \mforall{}m:\mBbbN{}\msupplus{}.  1  <  f[m]



Date html generated: 2019_06_20-PM-02_25_50
Last ObjectModification: 2019_06_19-PM-00_08_06

Theory : num_thy_1


Home Index