Nuprl Lemma : genfact-step
∀[n:ℤ]. ∀[f:ℕ+ ⟶ ℤ]. ∀[b:ℤ].  (genfact(n;b;m.f[m]) = if n <z 1 then b else f[n] * genfact(n - 1;b;m.f[m]) fi  ∈ ℤ)
Proof
Definitions occuring in Statement : 
genfact: genfact(n;b;m.f[m]), 
nat_plus: ℕ+, 
ifthenelse: if b then t else f fi , 
lt_int: i <z j, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
multiply: n * m, 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
genfact: genfact(n;b;m.f[m]), 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
subtract: n - m, 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
so_apply: x[s], 
nat_plus: ℕ+, 
decidable: Dec(P), 
has-value: (a)↓, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
nat_plus_wf, 
subtract-1-ge-0, 
istype-top, 
decidable__lt, 
value-type-has-value, 
int-value-type, 
subtract_wf, 
istype-nat, 
decidable__le, 
equal_wf, 
istype-le, 
genfact_wf, 
iff_weakening_equal, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
squash_wf, 
true_wf, 
istype-universe, 
genfact-base-linear, 
subtype_rel_self
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :functionIsType, 
lessCases, 
axiomSqEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
callbyvalueReduce, 
intEquality, 
multiplyEquality, 
closedConclusion, 
universeEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[b:\mBbbZ{}].
    (genfact(n;b;m.f[m])  =  if  n  <z  1  then  b  else  f[n]  *  genfact(n  -  1;b;m.f[m])  fi  )
Date html generated:
2019_06_20-PM-02_25_44
Last ObjectModification:
2019_02_08-AM-11_48_54
Theory : num_thy_1
Home
Index