Nuprl Lemma : accumulate_abort_cons_lemma

v,u,s,F:Top.
  (accumulate_abort(x,y.F[x;y];s;[u v]) let s' ⟵ case of inl(y) => F[u;y] inr(_) => s
                                            in accumulate_abort(x,y.F[x;y];s';v))


Proof




Definitions occuring in Statement :  accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) cons: [a b] callbyvalueall: callbyvalueall top: Top so_apply: x[s1;s2] all: x:A. B[x] decide: case of inl(x) => s[x] inr(y) => t[y] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) eager-accum: eager-accum(x,a.f[x; a];y;l) cons: [a b] so_lambda: λ2y.t[x; y] member: t ∈ T top: Top so_apply: x[s1;s2]
Lemmas referenced :  spread_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
\mforall{}v,u,s,F:Top.
    (accumulate\_abort(x,y.F[x;y];s;[u  /  v])  \msim{}  let  s'  \mleftarrow{}{}  case  s  of  inl(y)  =>  F[u;y]  |  inr($_\mbackslash{}ff\000C7b}$)  =>  s
                                                                                        in  accumulate\_abort(x,y.F[x;y];s';v))



Date html generated: 2017_09_29-PM-05_51_42
Last ObjectModification: 2017_07_11-PM-02_30_27

Theory : omega


Home Index