Step
*
1
2
1
1
1
1
1
of Lemma
omega_step_wf
1. n : ℕ
2. eqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List
3. ineqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List
4. ¬(n = 0 ∈ ℤ)
5. first-success(λL.find-exact-eq-constraint(L);eqs) ∈ i:ℕ||eqs||
   × x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)} 
   × {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?
6. i : ℕ||eqs||
7. x : {x:ℤ List| x = eqs[i] ∈ (ℤ List)} 
8. x2 : {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} 
9. first-success(λL.find-exact-eq-constraint(L);eqs)
= (inl <i, x, x2>)
∈ (i:ℕ||eqs|| × x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)}  × {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?)
⊢ x ∈ {l:ℤ List| ||l|| = (n + 1) ∈ ℤ} 
BY
{ TACTIC:(DVar `x' THEN MemTypeCD THEN Auto) }
1
.....set predicate..... 
1. n : ℕ
2. eqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List
3. ineqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List
4. ¬(n = 0 ∈ ℤ)
5. first-success(λL.find-exact-eq-constraint(L);eqs) ∈ i:ℕ||eqs||
   × x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)} 
   × {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?
6. i : ℕ||eqs||
7. x : ℤ List
8. x = eqs[i] ∈ (ℤ List)
9. x2 : {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} 
10. first-success(λL.find-exact-eq-constraint(L);eqs)
= (inl <i, x, x2>)
∈ (i:ℕ||eqs|| × x:{x:ℤ List| x = eqs[i] ∈ (ℤ List)}  × {i@0:ℕ+||eqs[i]||| |eqs[i][i@0]| = 1 ∈ ℤ} ?)
⊢ ||x|| = (n + 1) ∈ ℤ
Latex:
Latex:
1.  n  :  \mBbbN{}
2.  eqs  :  \{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List
3.  ineqs  :  \{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List
4.  \mneg{}(n  =  0)
5.  first-success(\mlambda{}L.find-exact-eq-constraint(L);eqs)  \mmember{}  i:\mBbbN{}||eqs||
      \mtimes{}  x:\{x:\mBbbZ{}  List|  x  =  eqs[i]\} 
      \mtimes{}  \{i@0:\mBbbN{}\msupplus{}||eqs[i]|||  |eqs[i][i@0]|  =  1\}  ?
6.  i  :  \mBbbN{}||eqs||
7.  x  :  \{x:\mBbbZ{}  List|  x  =  eqs[i]\} 
8.  x2  :  \{i@0:\mBbbN{}\msupplus{}||eqs[i]|||  |eqs[i][i@0]|  =  1\} 
9.  first-success(\mlambda{}L.find-exact-eq-constraint(L);eqs)  =  (inl  <i,  x,  x2>)
\mvdash{}  x  \mmember{}  \{l:\mBbbZ{}  List|  ||l||  =  (n  +  1)\} 
By
Latex:
TACTIC:(DVar  `x'  THEN  MemTypeCD  THEN  Auto)
Home
Index