Nuprl Lemma : omega_step_wf

[p:IntConstraints]. (omega_step(p) ∈ IntConstraints)


Proof




Definitions occuring in Statement :  omega_step: omega_step(p) int-constraint-problem: IntConstraints uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T omega_step: omega_step(p) subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a nat: less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q prop: int-constraint-problem: IntConstraints tunion: x:A.B[x] pi2: snd(t) int-problem-dimension: dim(p) decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] nil: [] cons: [a b] subtract: m int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k le: A ≤ B int_upper: {i...}
Lemmas referenced :  lt_int_wf int-problem-dimension_wf eqtt_to_assert assert_of_lt_int istype-top istype-void eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf int-constraint-problem_wf decidable__equal_int int_subtype_base set_wf list_wf equal_wf length_wf list-cases product_subtype_list reduce_hd_cons_lemma subtract_wf first-success_wf equal-wf-base-T list_subtype_base equal-wf-base int_seg_wf equal-wf-T-base absval_wf select_wf decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates le-add-cancel istype-int find-exact-eq-constraint_wf decidable__lt not-lt-2 le_antisymmetry_iff add-swap add-zero exact-reduce-constraints_wf2 set_subtype_base lelt_wf gcd-reduce-eq-constraints_wf2 not-equal-2 minus-zero minus-minus le_wf nil_wf gcd-reduce-ineq-constraints_wf2 unit_wf2 subtype_rel_union tunion_wf nat_wf null_wf assert_of_null shadow_inequalities_wf le-add-cancel2 subtype_rel_list_set eager-map-is-map list-value-type eager-map_wf int-value-type append_wf map_wf map-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache sqequalRule natural_numberEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination Error :lambdaEquality_alt,  setElimination rename lessCases axiomSqEquality Error :isect_memberEquality_alt,  independent_pairFormation voidElimination imageMemberEquality baseClosed imageElimination independent_functionElimination Error :dependent_pairFormation_alt,  Error :equalityIsType1,  promote_hyp dependent_functionElimination instantiate cumulativity Error :universeIsType,  axiomEquality intEquality addEquality hypothesis_subsumption setEquality baseApply closedConclusion productEquality minusEquality Error :setIsType,  Error :equalityIsType4,  Error :dependent_set_memberEquality_alt,  applyLambdaEquality Error :inlEquality_alt,  Error :inrEquality_alt,  voidEquality Error :dependent_pairEquality_alt,  independent_pairEquality Error :productIsType

Latex:
\mforall{}[p:IntConstraints].  (omega\_step(p)  \mmember{}  IntConstraints)



Date html generated: 2019_06_20-PM-00_51_13
Last ObjectModification: 2018_10_02-PM-05_40_47

Theory : omega


Home Index