Nuprl Lemma : shadow_inequalities_wf
∀[n:{2...}]. ∀[ineqs:{L:ℤ List| ||L|| = n ∈ ℤ}  List].  (shadow_inequalities(ineqs) ∈ {L:ℤ List| ||L|| = (n - 1) ∈ ℤ}  L\000Cist)
Proof
Definitions occuring in Statement : 
shadow_inequalities: shadow_inequalities(ineqs)
, 
length: ||as||
, 
list: T List
, 
int_upper: {i...}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
shadow_inequalities: shadow_inequalities(ineqs)
, 
so_lambda: λ2x.t[x]
, 
int_upper: {i...}
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
listp: A List+
, 
guard: {T}
, 
subtract: n - m
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
set_wf, 
list_wf, 
equal_wf, 
length_wf, 
list-cases, 
nil_wf, 
equal-wf-base-T, 
subtract_wf, 
product_subtype_list, 
value-type-has-value, 
int-value-type, 
index-of-min_wf, 
max_tl_coeffs_wf, 
decidable__lt, 
istype-false, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
cons-listp, 
shadow-inequalities_wf, 
upper_subtype_nat, 
istype-void, 
cons_wf, 
list_subtype_base, 
int_subtype_base, 
int_upper_wf, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-int, 
subtype_rel_sets, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-member-int_seg2, 
decidable__le, 
not-le-2, 
add-zero, 
le-add-cancel2, 
less_than_transitivity1, 
le_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
setElimination, 
rename, 
Error :universeIsType, 
dependent_functionElimination, 
unionElimination, 
setEquality, 
because_Cache, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
callbyvalueReduce, 
independent_isectElimination, 
addEquality, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
voidElimination, 
independent_functionElimination, 
applyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
Error :equalityIsType1, 
minusEquality, 
Error :equalityIsType4, 
Error :productIsType
Latex:
\mforall{}[n:\{2...\}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List].
    (shadow\_inequalities(ineqs)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  -  1)\}    List)
Date html generated:
2019_06_20-PM-00_50_34
Last ObjectModification:
2018_10_07-PM-08_45_57
Theory : omega
Home
Index