Nuprl Lemma : shadow_inequalities_wf

[n:{2...}]. ∀[ineqs:{L:ℤ List| ||L|| n ∈ ℤ}  List].  (shadow_inequalities(ineqs) ∈ {L:ℤ List| ||L|| (n 1) ∈ ℤ}  L\000Cist)


Proof




Definitions occuring in Statement :  shadow_inequalities: shadow_inequalities(ineqs) length: ||as|| list: List int_upper: {i...} uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T shadow_inequalities: shadow_inequalities(ineqs) so_lambda: λ2x.t[x] int_upper: {i...} prop: so_apply: x[s] all: x:A. B[x] or: P ∨ Q nil: [] it: cons: [a b] has-value: (a)↓ uimplies: supposing a nat_plus: + le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) subtype_rel: A ⊆B less_than': less_than'(a;b) true: True listp: List+ guard: {T} subtract: m top: Top int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  set_wf list_wf equal_wf length_wf list-cases nil_wf equal-wf-base-T subtract_wf product_subtype_list value-type-has-value int-value-type index-of-min_wf max_tl_coeffs_wf decidable__lt istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf cons-listp shadow-inequalities_wf upper_subtype_nat istype-void cons_wf list_subtype_base int_subtype_base int_upper_wf equal-wf-base set_subtype_base le_wf istype-int subtype_rel_sets le_antisymmetry_iff condition-implies-le minus-add minus-minus minus-one-mul add-swap minus-one-mul-top add-associates add-member-int_seg2 decidable__le not-le-2 add-zero le-add-cancel2 less_than_transitivity1 le_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis Error :lambdaEquality_alt,  hypothesisEquality setElimination rename Error :universeIsType,  dependent_functionElimination unionElimination setEquality because_Cache natural_numberEquality promote_hyp hypothesis_subsumption productElimination callbyvalueReduce independent_isectElimination addEquality Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :lambdaFormation_alt,  voidElimination independent_functionElimination applyEquality baseApply closedConclusion baseClosed axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  Error :inhabitedIsType,  Error :equalityIsType1,  minusEquality Error :equalityIsType4,  Error :productIsType

Latex:
\mforall{}[n:\{2...\}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List].
    (shadow\_inequalities(ineqs)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  -  1)\}    List)



Date html generated: 2019_06_20-PM-00_50_34
Last ObjectModification: 2018_10_07-PM-08_45_57

Theory : omega


Home Index