Nuprl Lemma : max_tl_coeffs_wf

[n:ℕ+]. ∀[ineqs:{L:ℤ List| ||L|| n ∈ ℤ}  List+].  (max_tl_coeffs(ineqs) ∈ {L:ℤ List| ||L|| (n 1) ∈ ℤ)


Proof




Definitions occuring in Statement :  max_tl_coeffs: max_tl_coeffs(ineqs) listp: List+ length: ||as|| list: List nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T listp: List+ so_lambda: λ2x.t[x] nat_plus: + prop: so_apply: x[s] all: x:A. B[x] or: P ∨ Q cons: [a b] subtype_rel: A ⊆B uimplies: supposing a less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q max_tl_coeffs: max_tl_coeffs(ineqs) guard: {T} ge: i ≥  decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q uiff: uiff(P;Q) subtract: m top: Top le: A ≤ B true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  set_wf list_wf equal_wf length_wf list-cases product_subtype_list listp_wf equal-wf-base-T list_subtype_base int_subtype_base nat_plus_wf length_of_nil_lemma list-valueall-type int-valueall-type tl_wf cons_wf subtype_rel_list set_subtype_base less_than_wf istype-int map_wf absval_wf hd_wf decidable__le istype-false not-ge-2 less-iff-le condition-implies-le minus-add istype-void minus-one-mul add-swap minus-one-mul-top add-associates zero-add add-commutes add_functionality_wrt_le add-zero le-add-cancel2 map2_wf int-value-type imax_wf reduce_hd_cons_lemma reduce_tl_cons_lemma eager-accum-list_accum list_accum_wf subtract_wf map-length squash_wf true_wf length_tl le_antisymmetry_iff subtype_rel_self iff_weakening_equal length-map2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution setElimination thin rename extract_by_obid isectElimination intEquality hypothesis sqequalRule Error :lambdaEquality_alt,  hypothesisEquality Error :universeIsType,  dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination axiomEquality equalityTransitivity equalitySymmetry setEquality baseApply closedConclusion baseClosed applyEquality because_Cache independent_isectElimination Error :isect_memberEquality_alt,  imageElimination voidElimination Error :setIsType,  Error :inhabitedIsType,  Error :equalityIsType4,  natural_numberEquality Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :lambdaFormation_alt,  independent_functionElimination addEquality minusEquality universeEquality imageMemberEquality instantiate

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List\msupplus{}].    (max\_tl\_coeffs(ineqs)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  -  1)\}\000C  )



Date html generated: 2019_06_20-PM-00_50_26
Last ObjectModification: 2018_10_02-PM-05_40_52

Theory : omega


Home Index