Nuprl Lemma : max_tl_coeffs_wf
∀[n:ℕ+]. ∀[ineqs:{L:ℤ List| ||L|| = n ∈ ℤ}  List+].  (max_tl_coeffs(ineqs) ∈ {L:ℤ List| ||L|| = (n - 1) ∈ ℤ} )
Proof
Definitions occuring in Statement : 
max_tl_coeffs: max_tl_coeffs(ineqs)
, 
listp: A List+
, 
length: ||as||
, 
list: T List
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
listp: A List+
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
and: P ∧ Q
, 
max_tl_coeffs: max_tl_coeffs(ineqs)
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
set_wf, 
list_wf, 
equal_wf, 
length_wf, 
list-cases, 
product_subtype_list, 
listp_wf, 
equal-wf-base-T, 
list_subtype_base, 
int_subtype_base, 
nat_plus_wf, 
length_of_nil_lemma, 
list-valueall-type, 
int-valueall-type, 
tl_wf, 
cons_wf, 
subtype_rel_list, 
set_subtype_base, 
less_than_wf, 
istype-int, 
map_wf, 
absval_wf, 
hd_wf, 
decidable__le, 
istype-false, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
map2_wf, 
int-value-type, 
imax_wf, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
eager-accum-list_accum, 
list_accum_wf, 
subtract_wf, 
map-length, 
squash_wf, 
true_wf, 
length_tl, 
le_antisymmetry_iff, 
subtype_rel_self, 
iff_weakening_equal, 
length-map2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesis, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesisEquality, 
Error :universeIsType, 
dependent_functionElimination, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
Error :isect_memberEquality_alt, 
imageElimination, 
voidElimination, 
Error :setIsType, 
Error :inhabitedIsType, 
Error :equalityIsType4, 
natural_numberEquality, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
independent_functionElimination, 
addEquality, 
minusEquality, 
universeEquality, 
imageMemberEquality, 
instantiate
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List\msupplus{}].    (max\_tl\_coeffs(ineqs)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  -  1)\}\000C  )
Date html generated:
2019_06_20-PM-00_50_26
Last ObjectModification:
2018_10_02-PM-05_40_52
Theory : omega
Home
Index