Nuprl Lemma : map2_wf

[T:Type]. ∀[A,B:Type]. ∀[f:A ⟶ B ⟶ T]. ∀[as:A List]. ∀[bs:B List].  (map2(f;as;bs) ∈ List) supposing value-type(T)


Proof




Definitions occuring in Statement :  map2: map2(f;as;bs) list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: subtype_rel: A ⊆B or: P ∨ Q map2: map2(f;as;bs) nil: [] it: cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than: a < b has-value: (a)↓
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf list_wf equal-wf-T-base nat_wf colength_wf_list list-cases nil_wf product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf int_subtype_base sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes subtract_wf not-ge-2 less-iff-le minus-minus add-swap value-type-has-value cons_wf value-type_wf list-value-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination voidEquality baseClosed instantiate intEquality applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality callbyvalueReduce functionExtensionality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (map2(f;as;bs)  \mmember{}  T  List) 
    supposing  value-type(T)



Date html generated: 2017_04_14-AM-08_41_30
Last ObjectModification: 2017_02_27-PM-03_31_48

Theory : list_0


Home Index