Nuprl Lemma : index-of-min_wf

[zs:ℤ List+]. (index-of-min(zs) ∈ {i:ℕ||zs||| ∀x:ℤ((x ∈ zs)  (zs[i] ≤ x))} )


Proof




Definitions occuring in Statement :  index-of-min: index-of-min(zs) l_member: (x ∈ l) select: L[n] listp: List+ length: ||as|| int_seg: {i..j-} uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T index-of-min: index-of-min(zs) all: x:A. B[x] implies:  Q pi1: fst(t) and: P ∧ Q prop: listp: List+ so_lambda: λ2x.t[x] le: A ≤ B int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) lelt: i ≤ j < k squash: T so_apply: x[s] guard: {T}
Lemmas referenced :  l_member_wf all_wf le_wf select_wf sq_stable__le select_member equal_wf listp_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule because_Cache thin lambdaFormation productElimination setElimination rename dependent_set_memberEquality hypothesisEquality sqequalHypSubstitution extract_by_obid isectElimination intEquality hypothesis lambdaEquality functionEquality dependent_functionElimination independent_isectElimination natural_numberEquality independent_functionElimination imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry axiomEquality hyp_replacement independent_pairFormation applyEquality setEquality

Latex:
\mforall{}[zs:\mBbbZ{}  List\msupplus{}].  (index-of-min(zs)  \mmember{}  \{i:\mBbbN{}||zs|||  \mforall{}x:\mBbbZ{}.  ((x  \mmember{}  zs)  {}\mRightarrow{}  (zs[i]  \mleq{}  x))\}  )



Date html generated: 2016_10_21-AM-09_52_07
Last ObjectModification: 2016_07_12-AM-05_10_52

Theory : omega


Home Index