Nuprl Lemma : index-of-min_wf
∀[zs:ℤ List+]. (index-of-min(zs) ∈ {i:ℕ||zs||| ∀x:ℤ. ((x ∈ zs) 
⇒ (zs[i] ≤ x))} )
Proof
Definitions occuring in Statement : 
index-of-min: index-of-min(zs)
, 
l_member: (x ∈ l)
, 
select: L[n]
, 
listp: A List+
, 
length: ||as||
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
index-of-min: index-of-min(zs)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
prop: ℙ
, 
listp: A List+
, 
so_lambda: λ2x.t[x]
, 
le: A ≤ B
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
l_member_wf, 
all_wf, 
le_wf, 
select_wf, 
sq_stable__le, 
select_member, 
equal_wf, 
listp_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
because_Cache, 
thin, 
lambdaFormation, 
productElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
hyp_replacement, 
independent_pairFormation, 
applyEquality, 
setEquality
Latex:
\mforall{}[zs:\mBbbZ{}  List\msupplus{}].  (index-of-min(zs)  \mmember{}  \{i:\mBbbN{}||zs|||  \mforall{}x:\mBbbZ{}.  ((x  \mmember{}  zs)  {}\mRightarrow{}  (zs[i]  \mleq{}  x))\}  )
Date html generated:
2016_10_21-AM-09_52_07
Last ObjectModification:
2016_07_12-AM-05_10_52
Theory : omega
Home
Index