Nuprl Lemma : index-of-min_wf
∀[zs:ℤ List+]. (index-of-min(zs) ∈ {i:ℕ||zs||| ∀x:ℤ. ((x ∈ zs) ⇒ (zs[i] ≤ x))} )
Proof
Definitions occuring in Statement : 
index-of-min: index-of-min(zs), 
l_member: (x ∈ l), 
select: L[n], 
listp: A List+, 
length: ||as||, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
index-of-min: index-of-min(zs), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pi1: fst(t), 
and: P ∧ Q, 
prop: ℙ, 
listp: A List+, 
so_lambda: λ2x.t[x], 
le: A ≤ B, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
squash: ↓T, 
so_apply: x[s], 
guard: {T}
Lemmas referenced : 
l_member_wf, 
all_wf, 
le_wf, 
select_wf, 
sq_stable__le, 
select_member, 
equal_wf, 
listp_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
because_Cache, 
thin, 
lambdaFormation, 
productElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
dependent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
hyp_replacement, 
independent_pairFormation, 
applyEquality, 
setEquality
Latex:
\mforall{}[zs:\mBbbZ{}  List\msupplus{}].  (index-of-min(zs)  \mmember{}  \{i:\mBbbN{}||zs|||  \mforall{}x:\mBbbZ{}.  ((x  \mmember{}  zs)  {}\mRightarrow{}  (zs[i]  \mleq{}  x))\}  )
 Date html generated: 
2016_10_21-AM-09_52_07
 Last ObjectModification: 
2016_07_12-AM-05_10_52
Theory : omega
Home
Index