Nuprl Lemma : shadow-inequalities_wf

[n:ℕ]. ∀[ineqs:{L:ℤ List| ||L|| n ∈ ℤ}  List]. ∀[i:ℕn].
  (shadow-inequalities(i;ineqs) ∈ {L:ℤ List| ||L|| (n 1) ∈ ℤ}  List)


Proof




Definitions occuring in Statement :  shadow-inequalities: shadow-inequalities(i;ineqs) length: ||as|| list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B sq_type: SQType(T) guard: {T} int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k and: P ∧ Q squash: T le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b true: True iff: ⇐⇒ Q rev_implies:  Q shadow-inequalities: shadow-inequalities(i;ineqs) has-value: (a)↓
Lemmas referenced :  int_seg_wf list_wf equal-wf-base list_subtype_base int_subtype_base set_subtype_base le_wf istype-int istype-nat l_member_wf subtype_rel_list equal-wf-base-T subtype_base_sq select_wf sq_stable__le set_wf equal_wf less_than_transitivity1 length_wf le_weakening list-set-type map_wf squash_wf true_wf istype-universe length-list-delete int_seg_subtype_nat istype-false subtract_wf subtype_rel_self iff_weakening_equal list-delete_wf filter_wf5 eq_int_wf evalall-reduce list-valueall-type set-valueall-type int-valueall-type list-value-type value-type-has-value eager-append_wf set-value-type eager-product-map_wf istype-less_than equal_functionality_wrt_subtype_rel2 length-shadow-vec istype-le shadow-vec_wf lt_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType setEquality intEquality baseApply closedConclusion baseClosed applyEquality independent_isectElimination because_Cache lambdaEquality_alt lambdaFormation lambdaEquality productElimination instantiate cumulativity dependent_functionElimination independent_functionElimination imageMemberEquality imageElimination lambdaFormation_alt equalityIstype setIsType sqequalBase universeEquality independent_pairFormation dependent_set_memberEquality_alt callbyvalueReduce equalityIsType4 productIsType dependent_pairFormation_alt

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List].  \mforall{}[i:\mBbbN{}n].
    (shadow-inequalities(i;ineqs)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  -  1)\}    List)



Date html generated: 2020_05_19-PM-09_39_17
Last ObjectModification: 2020_01_04-PM-07_59_08

Theory : omega


Home Index