Nuprl Lemma : shadow-inequalities_wf
∀[n:ℕ]. ∀[ineqs:{L:ℤ List| ||L|| = n ∈ ℤ}  List]. ∀[i:ℕn].
  (shadow-inequalities(i;ineqs) ∈ {L:ℤ List| ||L|| = (n - 1) ∈ ℤ}  List)
Proof
Definitions occuring in Statement : 
shadow-inequalities: shadow-inequalities(i;ineqs)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
shadow-inequalities: shadow-inequalities(i;ineqs)
, 
has-value: (a)↓
Lemmas referenced : 
int_seg_wf, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
set_subtype_base, 
le_wf, 
istype-int, 
istype-nat, 
l_member_wf, 
subtype_rel_list, 
equal-wf-base-T, 
subtype_base_sq, 
select_wf, 
sq_stable__le, 
set_wf, 
equal_wf, 
less_than_transitivity1, 
length_wf, 
le_weakening, 
list-set-type, 
map_wf, 
squash_wf, 
true_wf, 
istype-universe, 
length-list-delete, 
int_seg_subtype_nat, 
istype-false, 
subtract_wf, 
subtype_rel_self, 
iff_weakening_equal, 
list-delete_wf, 
filter_wf5, 
eq_int_wf, 
evalall-reduce, 
list-valueall-type, 
set-valueall-type, 
int-valueall-type, 
list-value-type, 
value-type-has-value, 
eager-append_wf, 
set-value-type, 
eager-product-map_wf, 
istype-less_than, 
equal_functionality_wrt_subtype_rel2, 
length-shadow-vec, 
istype-le, 
shadow-vec_wf, 
lt_int_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
setEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
lambdaEquality_alt, 
lambdaFormation, 
lambdaEquality, 
productElimination, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
independent_functionElimination, 
imageMemberEquality, 
imageElimination, 
lambdaFormation_alt, 
equalityIstype, 
setIsType, 
sqequalBase, 
universeEquality, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
callbyvalueReduce, 
equalityIsType4, 
productIsType, 
dependent_pairFormation_alt
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[ineqs:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List].  \mforall{}[i:\mBbbN{}n].
    (shadow-inequalities(i;ineqs)  \mmember{}  \{L:\mBbbZ{}  List|  ||L||  =  (n  -  1)\}    List)
Date html generated:
2020_05_19-PM-09_39_17
Last ObjectModification:
2020_01_04-PM-07_59_08
Theory : omega
Home
Index