Nuprl Lemma : shadow-vec_wf
∀[as,bs:ℤ List]. ∀[i:ℕ||as||].  shadow-vec(i;as;bs) ∈ ℤ List supposing ||as|| = ||bs|| ∈ ℤ
Proof
Definitions occuring in Statement : 
shadow-vec: shadow-vec(i;as;bs)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
shadow-vec: shadow-vec(i;as;bs)
, 
has-value: (a)↓
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
list-delete_wf, 
int-vec-add_wf, 
int_seg_wf, 
equal_wf, 
le_weakening, 
length_wf, 
less_than_transitivity1, 
list-value-type, 
list_wf, 
value-type-has-value, 
int-valueall-type, 
list-valueall-type, 
sq_stable__le, 
select_wf, 
int-vec-mul_wf, 
evalall-reduce
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
intEquality, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].    shadow-vec(i;as;bs)  \mmember{}  \mBbbZ{}  List  supposing  ||as||  =  ||bs||
Date html generated:
2016_05_14-AM-06_57_26
Last ObjectModification:
2016_01_14-PM-08_43_54
Theory : omega
Home
Index