Nuprl Lemma : shadow-vec_wf

[as,bs:ℤ List]. ∀[i:ℕ||as||].  shadow-vec(i;as;bs) ∈ ℤ List supposing ||as|| ||bs|| ∈ ℤ


Proof




Definitions occuring in Statement :  shadow-vec: shadow-vec(i;as;bs) length: ||as|| list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a shadow-vec: shadow-vec(i;as;bs) has-value: (a)↓ int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T guard: {T} all: x:A. B[x] prop:
Lemmas referenced :  list-delete_wf int-vec-add_wf int_seg_wf equal_wf le_weakening length_wf less_than_transitivity1 list-value-type list_wf value-type-has-value int-valueall-type list-valueall-type sq_stable__le select_wf int-vec-mul_wf evalall-reduce
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache intEquality hypothesisEquality setElimination rename hypothesis independent_isectElimination natural_numberEquality independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination minusEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[as,bs:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].    shadow-vec(i;as;bs)  \mmember{}  \mBbbZ{}  List  supposing  ||as||  =  ||bs||



Date html generated: 2016_05_14-AM-06_57_26
Last ObjectModification: 2016_01_14-PM-08_43_54

Theory : omega


Home Index