Nuprl Lemma : exact-reduce-constraints_wf2

[n:ℕ]. ∀[w:{l:ℤ List| ||l|| (n 1) ∈ ℤ]. ∀[j:ℕ||w||]. ∀[L:{l:ℤ List| ||l|| (n 1) ∈ ℤ}  List].
  (exact-reduce-constraints(w;j;L) ∈ {l:ℤ List| ||l|| ((n 1) 1) ∈ ℤ}  List)


Proof




Definitions occuring in Statement :  exact-reduce-constraints: exact-reduce-constraints(w;j;L) length: ||as|| list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a nat: so_apply: x[s] prop: all: x:A. B[x] implies:  Q sq_stable: SqStable(P) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) guard: {T} subtract: m le: A ≤ B less_than': less_than'(a;b) true: True squash: T
Lemmas referenced :  exact-reduce-constraints_wf subtype_rel_list_set list_wf equal-wf-base list_subtype_base int_subtype_base set_subtype_base le_wf istype-int equal_wf length_wf sq_stable__subtype_rel decidable__equal_int subtract_wf istype-false not-equal-2 le_antisymmetry_iff condition-implies-le minus-add minus-minus minus-one-mul add-swap minus-one-mul-top add-commutes add-associates add_functionality_wrt_le le-add-cancel zero-add int_seg_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality intEquality because_Cache sqequalRule lambdaEquality_alt baseApply closedConclusion baseClosed independent_isectElimination natural_numberEquality universeIsType addEquality inhabitedIsType lambdaFormation_alt equalityTransitivity equalitySymmetry equalityIstype sqequalBase setEquality independent_functionElimination setIsType dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination minusEquality Error :memTop,  imageMemberEquality imageElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[w:\{l:\mBbbZ{}  List|  ||l||  =  (n  +  1)\}  ].  \mforall{}[j:\mBbbN{}||w||].  \mforall{}[L:\{l:\mBbbZ{}  List|  ||l||  =  (n  +  1)\}    List].
    (exact-reduce-constraints(w;j;L)  \mmember{}  \{l:\mBbbZ{}  List|  ||l||  =  ((n  -  1)  +  1)\}    List)



Date html generated: 2020_05_19-PM-09_39_32
Last ObjectModification: 2020_01_04-PM-07_58_48

Theory : omega


Home Index