Nuprl Lemma : exact-reduce-constraints_wf2
∀[n:ℕ]. ∀[w:{l:ℤ List| ||l|| = (n + 1) ∈ ℤ} ]. ∀[j:ℕ||w||]. ∀[L:{l:ℤ List| ||l|| = (n + 1) ∈ ℤ}  List].
  (exact-reduce-constraints(w;j;L) ∈ {l:ℤ List| ||l|| = ((n - 1) + 1) ∈ ℤ}  List)
Proof
Definitions occuring in Statement : 
exact-reduce-constraints: exact-reduce-constraints(w;j;L)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
exact-reduce-constraints_wf, 
subtype_rel_list_set, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
set_subtype_base, 
le_wf, 
istype-int, 
equal_wf, 
length_wf, 
sq_stable__subtype_rel, 
decidable__equal_int, 
subtract_wf, 
istype-false, 
not-equal-2, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add-associates, 
add_functionality_wrt_le, 
le-add-cancel, 
zero-add, 
int_seg_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
intEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
natural_numberEquality, 
universeIsType, 
addEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
sqequalBase, 
setEquality, 
independent_functionElimination, 
setIsType, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
productElimination, 
minusEquality, 
Error :memTop, 
imageMemberEquality, 
imageElimination, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[w:\{l:\mBbbZ{}  List|  ||l||  =  (n  +  1)\}  ].  \mforall{}[j:\mBbbN{}||w||].  \mforall{}[L:\{l:\mBbbZ{}  List|  ||l||  =  (n  +  1)\}    List].
    (exact-reduce-constraints(w;j;L)  \mmember{}  \{l:\mBbbZ{}  List|  ||l||  =  ((n  -  1)  +  1)\}    List)
Date html generated:
2020_05_19-PM-09_39_32
Last ObjectModification:
2020_01_04-PM-07_58_48
Theory : omega
Home
Index