Nuprl Lemma : first-success_wf
∀[T:Type]. ∀[A:T ⟶ Type]. ∀[f:x:T ⟶ (A[x]?)]. ∀[L:T List].  (first-success(f;L) ∈ i:ℕ||L|| × A[L[i]]?)
Proof
Definitions occuring in Statement : 
first-success: first-success(f;L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
first-success: first-success(f;L)
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
cons: [a / b]
, 
colength: colength(L)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
so_lambda: λ2x.t[x]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
list-cases, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
list_ind_nil_lemma, 
it_wf, 
int_seg_wf, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-commutes, 
le_wf, 
equal_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
nat_plus_wf, 
lelt_wf, 
length_wf, 
select_wf, 
non_neg_length, 
add-member-int_seg2, 
le-add-cancel2, 
subtype_rel-equal, 
cons_wf, 
select-cons-tl, 
decidable__lt, 
not-lt-2, 
add-subtract-cancel, 
list_wf, 
unit_wf2, 
le_reflexive, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
omega-shadow, 
mul-distributes, 
mul-associates, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
applyEquality, 
because_Cache, 
unionElimination, 
baseClosed, 
isect_memberEquality, 
voidEquality, 
inrEquality, 
productEquality, 
functionExtensionality, 
productElimination, 
promote_hyp, 
hypothesis_subsumption, 
applyLambdaEquality, 
imageMemberEquality, 
imageElimination, 
addEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
minusEquality, 
intEquality, 
instantiate, 
inlEquality, 
dependent_pairEquality, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
unionEquality, 
functionEquality, 
universeEquality, 
multiplyEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].  \mforall{}[f:x:T  {}\mrightarrow{}  (A[x]?)].  \mforall{}[L:T  List].
    (first-success(f;L)  \mmember{}  i:\mBbbN{}||L||  \mtimes{}  A[L[i]]?)
Date html generated:
2017_04_14-AM-08_37_30
Last ObjectModification:
2017_02_27-PM-03_29_45
Theory : list_0
Home
Index