Nuprl Lemma : first-success_wf

[T:Type]. ∀[A:T ⟶ Type]. ∀[f:x:T ⟶ (A[x]?)]. ∀[L:T List].  (first-success(f;L) ∈ i:ℕ||L|| × A[L[i]]?)


Proof




Definitions occuring in Statement :  first-success: first-success(f;L) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] unit: Unit member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q first-success: first-success(f;L) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q cons: [a b] colength: colength(L) squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m so_lambda: λ2x.t[x] sq_type: SQType(T) less_than: a < b nat_plus: + exists: x:A. B[x]
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list list-cases length_of_nil_lemma stuck-spread base_wf list_ind_nil_lemma it_wf int_seg_wf product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base length_of_cons_lemma list_ind_cons_lemma add_nat_plus length_wf_nat nat_plus_wf lelt_wf length_wf select_wf non_neg_length add-member-int_seg2 le-add-cancel2 subtype_rel-equal cons_wf select-cons-tl decidable__lt not-lt-2 add-subtract-cancel list_wf unit_wf2 le_reflexive one-mul add-mul-special two-mul mul-distributes-right zero-mul omega-shadow mul-distributes mul-associates int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality because_Cache unionElimination baseClosed isect_memberEquality voidEquality inrEquality productEquality functionExtensionality productElimination promote_hyp hypothesis_subsumption applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality intEquality instantiate inlEquality dependent_pairEquality dependent_pairFormation sqequalIntensionalEquality unionEquality functionEquality universeEquality multiplyEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].  \mforall{}[f:x:T  {}\mrightarrow{}  (A[x]?)].  \mforall{}[L:T  List].
    (first-success(f;L)  \mmember{}  i:\mBbbN{}||L||  \mtimes{}  A[L[i]]?)



Date html generated: 2017_04_14-AM-08_37_30
Last ObjectModification: 2017_02_27-PM-03_29_45

Theory : list_0


Home Index