Nuprl Lemma : rev-append-as-reverse
∀[as,bs:Top].  (rev(as) + bs ~ rev(as) @ bs)
Proof
Definitions occuring in Statement : 
reverse: rev(as)
, 
rev-append: rev(as) + bs
, 
append: as @ bs
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reverse: rev(as)
Lemmas referenced : 
rev-append-property, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[as,bs:Top].    (rev(as)  +  bs  \msim{}  rev(as)  @  bs)
Date html generated:
2020_05_19-PM-09_38_09
Last ObjectModification:
2020_01_31-PM-04_34_06
Theory : omega
Home
Index