Nuprl Lemma : rev-append-as-reverse

[as,bs:Top].  (rev(as) bs rev(as) bs)


Proof




Definitions occuring in Statement :  reverse: rev(as) rev-append: rev(as) bs append: as bs uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reverse: rev(as)
Lemmas referenced :  rev-append-property istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomSqEquality inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[as,bs:Top].    (rev(as)  +  bs  \msim{}  rev(as)  @  bs)



Date html generated: 2020_05_19-PM-09_38_09
Last ObjectModification: 2020_01_31-PM-04_34_06

Theory : omega


Home Index