Step
*
1
1
2
1
of Lemma
unsat-omega_start
1. n : ℕ
2. u : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
3. v : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
4. ineqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
5. xs : ℤ List
6. (∀as∈[u / v].xs ⋅ as =0)
7. (∀bs∈ineqs.xs ⋅ bs ≥0)
8. xs ⋅ u =0
⊢ xs |= case gcd-reduce-eq-constraints([];[u / v])
of inl(eqs') =>
case gcd-reduce-ineq-constraints([];ineqs) of inl(ineqs') => inl <eqs', ineqs'> | inr(x) => inr x
| inr(x) =>
inr x
BY
{ (D -1
THEN (InstLemma `satisfies-gcd-reduce-eq-constraints` [⌜n + 1⌝;⌜[u / v]⌝;⌜[]⌝;⌜xs⌝]⋅ THENA Auto)
THEN D -1
THEN Thin (-1)
THEN (D -1 THENA Auto)
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜gcd-reduce-eq-constraints([];[u / v])⌝⋅ THENA Auto)
THEN (D -2 THEN Reduce 0)
THEN Auto) }
1
1. n : ℕ
2. u : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ}
3. v : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
4. ineqs : {L:ℤ List| ||L|| = (n + 1) ∈ ℤ} List
5. xs : ℤ List
6. (∀as∈[u / v].xs ⋅ as =0)
7. (∀bs∈ineqs.xs ⋅ bs ≥0)
8. ||xs|| = ||u|| ∈ ℤ
9. 0 < ||xs||
10. hd(xs) = 1 ∈ ℤ
11. u ⋅ xs = 0 ∈ ℤ
12. x : ℤ List+ List
13. gcd-reduce-eq-constraints([];[u / v]) = (inl x) ∈ (ℤ List+ List?)
14. True
15. (∀as∈x.xs ⋅ as =0)
⊢ xs |= case gcd-reduce-ineq-constraints([];ineqs) of inl(ineqs') => inl <x, ineqs'> | inr(x) => inr x
Latex:
Latex:
1. n : \mBbbN{}
2. u : \{L:\mBbbZ{} List| ||L|| = (n + 1)\}
3. v : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
4. ineqs : \{L:\mBbbZ{} List| ||L|| = (n + 1)\} List
5. xs : \mBbbZ{} List
6. (\mforall{}as\mmember{}[u / v].xs \mcdot{} as =0)
7. (\mforall{}bs\mmember{}ineqs.xs \mcdot{} bs \mgeq{}0)
8. xs \mcdot{} u =0
\mvdash{} xs |= case gcd-reduce-eq-constraints([];[u / v])
of inl(eqs') =>
case gcd-reduce-ineq-constraints([];ineqs) of inl(ineqs') => inl <eqs', ineqs'> | inr(x) => inr x
| inr(x) =>
inr x
By
Latex:
(D -1
THEN (InstLemma `satisfies-gcd-reduce-eq-constraints` [\mkleeneopen{}n + 1\mkleeneclose{};\mkleeneopen{}[u / v]\mkleeneclose{};\mkleeneopen{}[]\mkleeneclose{};\mkleeneopen{}xs\mkleeneclose{}]\mcdot{} THENA Auto)
THEN D -1
THEN Thin (-1)
THEN (D -1 THENA Auto)
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}gcd-reduce-eq-constraints([];[u / v])\mkleeneclose{}\mcdot{} THENA Auto)
THEN (D -2 THEN Reduce 0)
THEN Auto)
Home
Index